ie. Qy, = 2.347 x 10* Watt.

Additionally:

If both the surface are hlack Now, both the surface resistances become zero, since £ = 1 for both the black surfaces.
Then,

E, - E.
Q1= A2
12 R,
ie. Q= 4988 x 10* W (if both the surfaces are black.)
Example 13.19. Refer to Fig. Example 13.19. Three thin-walled, d.=015m. T. = 80K
long, circular cylinders 1, 2 and 3, of diameters 15 cm, 25 cm and 35 3 L * '

g, =0.05

¢ =025m, T,=7
£5,=0.1

dy=0.35m, T, = 300K,
e, =02

cm, respectively, are arranged concentrically as shown. Tempera-
ture of cylinder 1 is 80 K and that of cylinder 3 is 300 K.
Emissivities of cylinders 1, 2 and 3 are 0.05, 0.1 and 0.2, respec-
tively. Assuming that there is vacuum inside the annular spaces,
determine the steady state temperature attained by cylinder 2.
Solution. This is the case of radiant heat transfer between long,
concentric cylinders.

Data:
T,:=80K T3:=30K §g:=005 &:=010 &=

020 4d,:=015m 4,:=025m FIGURE Example 13.19 Three concentric
dy=035m  o:= 567 x 107 W/(m’K) cylinders

Let L be the length of cylinders. Then,
A xmd L 4
d

A, md,-L 2

and,

A; _

ZiT
In steady state, net radiarit heat transfer between cylinders 1 and 2 must be equal to the net radiant heat transfer between
cylinder 2 and 3.

ie Qiz = Cn (A}
We apply Eq. 13.60, namely,

Q= ———~F
TG
£ A A )\ &
Applying Eq. 13.60 in heat balance Eq. A:
Ao (TE-TH Ao (T -1

{for infinitely long, concentric cylinders...(13.60))

= ~{B)
(A2 LAl g
g (A )le g, (A&
In the above equation, T is the only unknown. Simplifying Eq. B:
AT -T) _ & \A)\&
Ay (T} - T) l{ﬁ]_[i_l}
g VA jlg
1 (4\[1
e )l b dy gy Ay d
(G -TH _ & \hj\& ) [d (since 21 = gy A2 L B2,
dl. AZ dZ A3 d3

ie. =
(' -T) _1_+[d




(Tf - Tz‘)

ie. = 3.293
(T; -T)
ie. (T - Ty = 3293-T,! - 3293.T
ie. 4293.T,! = T + 3.293.1}
1

4 T4Y3

‘e T, = T +3.293.T;
4.293

ie. T, = 280.864 K (steady state temperature of cylinder 2.)
Alternatively:

We can get value of T, very easily by applying solve block of Mathcad.
Start with a guess value for T,, and write the constraint, i.e. Eq. B immediately after ‘Given’ in the solve block; then,
typing ‘Find(T,) =" gives the value of T,
T,:=200K -..guess value }
Given

doo(T =T} dyo(TP-TH

1 (41 1 {41
—Hal 2 &2y
51+{d2J (52 J "’2+(dSJ[53 J

Find(T,) = 280.862
ie. T, = 280862 K (same as obtained earlier.)
Note: While writing the constraint equation in the solve block above, we have substituted dy/d, for A,/ Ayand d,/d, for
Azf A,
Once again, it is demonstrated that using solve block of Mathad, very much simplifies the solution, and reduces the
labour involved.

Example 13.20. A blind cylindrical hole of diameter 2 cm and length 3 cm is drilled

D=2cm into a metal slab having emissivity 0.6. If the metal siab is maintained at a tem-
£, =06 perature of 350°C, find the heat escaping out of the hole by radiation.
— //4_ ML)
] - Solution. This is a problem on determining energy esaping from a grey cavity. We

use Eq. 13.62, i.e.

4 1-F,
Qu=Ar& ol [1_(1_81)_51] w
(net radiation from grey cavity)
Data:
D=002m H:=003m & =06 T, =350 +273K
0= 5.67 x 107° W/(m?K) (Stefan-Boltzmann constant)
Now, F;, for a cavity is already shown to be:

FIGURE Example 13.20 Grey,
cylindrical covity

Fy=1- % (where, A; = areq of closing surface, A| = area of the cavity surface)
1

=D
ie. Fp=1-——2% (for cylindrical cavity of this problem)
— +7-D-H
ie. Fy=1-—P . %H
D+4H 4H+D
4 H
Therefore, Ly =
eretore, W4 H+D
ie Fy; = 0857 {view factor of the cavity w.r.t. itself)
N2
and, Ay=zDH+ 2 D
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ie.

ie.

Ap=2199 x 107 m? (area of surface of cylindrical cavity}

Then, from Eq. 13.62:

O = AUT[_L]

1-(1-¢&)Fy
O =1063 W {energy escaping from the cavity.)

Example 13.21. A hohlraum is to be constructed out of a thin copper
sphere of diameter = 15 cm. Its internal surface is highly oxidised. What
should be the area of a small opening to be made on the surface of the here. D = 0.1

sphere, if the desired absorptivity is 0.957 Sphere, om

Opening, A,

Data:
D:=015m (diameter of the sphere) Ar £ =095
a == 0.95 (absorptivity)
£ = &y (emissivity (= absorptivity), by Kirchhoff's law)

The inside surface of the sphere must absorb 95% of the energy,
which means that 5% of the energy escapes out through the opening of FIGURE Exomple 13.21 Hole on the
area = A,, say. surface of a sphere—holhraum
Let (3, = energy escaping through the hole, and
{2, = energy radiated from the spherical cavity
Then, we have:

1-F
Q,=A -e-a-T“-[—“- om Egq. 13.62)
! v ! 1-(1-&)F, o

and, Q= A5 ol

By data, -Q—z = 0.05

. 1
, 1-F,
i.e. ——1 =005
|:1_(1_€1)‘Fu:[
Solving,
1-F,; = 0.05 - (0.057-F;
ie. 1-0.05 = Fy;{1 - 0.0025)
0.95

ie. Fll = 1—_-6—-
ie. Fy, = 0.952

But, we also have, for the view factor of cavity, w.r.t. itself:

Fy=1-~ % (where, A, is the area of the opening, Ay is the area of surface of cavity)

1

ie. Fhu=1- Yl AZA (where, A, = total area of spherical surface)
s A1y
Now, A= P
ie. A, = 0071 m? (fotal area of spherical surface)
Therefore, .

Fn=[1- A = 0.952
A -A

i3 2
Solving,
A= _ o952
As - Az

ie. A, -2-Ay = 0952-A, - 0.952. A,
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ie. Ay (2 - 0.952) = A,(1 - 0.952)

ie. 1.048-A, = 3.393 x 107
-3
ie A= 3.393x 10
1.048
ie. A= 3238 %107 m? (area of the opening on the surface of sphere)
i.e. A; = 32.38 am® (area of the opening on the surface of sphere.)

13.7.4 Radiation Heat Exchange in Three-zone Enclosures

Fig. 13.32 (a) shows an enclosure made of three opaque, diffuse, grey surfaces. Let the surfaces A, A, A, be
maintained at uniform temperatures of T,, T, and T, respectively. Also, let the emissivities be &, & and £,
respectively. The radiation network for this system of three-surface enclosure is shown in Fig. 13.32 (b). While
drawing the radiation network, the principle to be followed is quite simple: first, draw the surface resistance
associated with each grey surface; then, connect the radiosity potentials between surfaces by the respective space
resistances.

@
Ep gt b > Ey

Q -—Q,
Surface 1, Surface 2, Ry =(1-g)(A &)
Ape, T, Ay e T, Ry = (1 - ey)(Ase))
Ry = (1 — ex)(Ay.25)
Surface 3, Riz = 1HA.F,5)
Aj g5, T Rz = 1(Ay.F3)

Ry = 1(AyFys)

Q
(a )

FIGURE 13.32 Three-surface enclosure and its radiation network

It is considered that the temperature of each surface is known, i.e. emissive power E, for each surface is
known. Then, the problem reduces to determining the radiosities J,, J, and 5. This is done by applying
Kirchhoff’s law of dc circuits to each node: i.e. sum of the currents (or, rate of heat transfers) entering inte each
node is zero. Doing this, we get the following three algebraic equations:

Node [;: B -1 +’r2wJT1 +I3—JTl =0 ...(13.63a)
R Ry K3

Node I Ebz - I?_ + Il _Jrz + JT3 _IZ =0 -{13.63b)
R; Ri2 Ra3

Node J3 Eys — I3 + h=Ts + J2 -1 =0 {13.63c)
R; Ry3 Ra;

Solving these three equations simultaneously, we get J,, J, and J;. ,

Remember to write each equation such that current flows info the node; then, the magnitudes of the
radiosities would adjust themselves when all the three equations are solved simultaneously. Once the
magnitudes of the radiosities are known, expressions for net heat flows between the surfaces are:

_h-bL _h-h
Qn= _‘ru =71 ..(13.64a)
ApBp
_h-I3_h-Ix
Qs = I ..(13.64b)
A Rs
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QB _ 12_13 = —]1"]2 ...(13.64(‘)

Ry 1
Ay Py
and, net heat flow from each surface is:
Ey — Eyy —
Q, = blR ho. ;:1 eh ..{13.65a)
1 - &
A1'£1]
By — Eyy —
Q= bzR : I _ :2 Efz ..(13.65b)
272
Az'EzJ
Eq— Eps —
Q, = b3R I _ ;:3 Efs ..(13.65¢)
3 — &3
A3'E3]

Eq. set 13.64 is a set of general equations for three diffuse, opaque, grey surfaces. However, these equations
will be modified depending upon any constraint that may be attached to any of the surfaces, i.e. say, if the
surface is black or re-radiating: J; = Ey; = o.T}. And, Q, = 0 for a re-radiating surface. If (; at any surface is
specified instead of the temperature (i.e. Ey), then, (E,, - J) /R, is replaced by ;.

We shall study a few such special cases of three-zone enclosures below:

Case (i}: Two black surfaces connected to a third refractory surface:

This is a three-zone enclosure, with two of the surfaces being black and the third surface being a re-radiating,
insulated surface. Typical example is a furnace whose bottom is the ‘source’ and the top is the ‘sink’ and the two
surfaces are connected by a refractory wall which acts as a re-radiating surface. In effect, the source and sink
exchange heat through the re-radiating wall; however, in steady state, the re-radiating wall radiates as much heat
as it receives, which means that net heat exchange through the re-radiating wall (= Q) is zero, i.e. E, = | for the re-
radiating wall. Therefore, once J (i.e. E;) is calculated for the re-radiating surface, its steady state temperature can
easily be calculated from: E, = .T*

Em=di R Ep=d4

Ep =4y Riz Epp=Js
Rir Ry  FRiz™ WALFL)
Rip= YA Frg)
Eo=J Rap = 11{A3.Faz) Rigr 4r Rar
bR = YR

(a) (b)
FIGURE 13.33 Two black surfaces connected by a third re-radicting surface and its radiation network

Fig. 13.33 (a) shows the radiation network for this case. The radiation network is drawn very easily by
remembering the usual principles: for a black surface, the surface resistance is zero, i.e. E, = J. For a re-radiating
surface too, E,, = ], as already explained; further, for a re-radiating surface, Q = 0. Between two given surfaces, the
radiosity potentials are connected by the respective space resistances, as shown. It may be observed that the
system reduces to a series—parallel circuit of resistances as shown in Fig. 13.33 (b).

So, we write, for the total resistance of the circuit, Ryy:

1 1 1

e + ———————
Rot Riz  (Rig +Ryp)

1

E,1-E 1
and, Qpp = B8 o (E By | =t e———
27 Ry P Ryy (Ryg +Rog)
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1

Here, ();; is the net radiant heat transferred between surfaces 1 and 2. Similar expressions can be written for
heat transfer between surfaces 2 and 3 (= {2,;) and the heat transfer between surfaces 1 and 3 (= Qq3)
Case (ii): Two grey surfaces surrounded by a third re-radiating surface:

In this case, there are two grey surfaces, and the third surface is an insulated, re-radiating surface. As al-
ready explained, the re-radiating surface radiates as much energy as it receives; therefore, net radiant heat trans-
fer for that surface is zero, i.e.

ie. Qu=o(T}-T) ARy +

Q;=0

ie. Il Ly
1~ £3
A3'83

i.e. Eb3 = 13

i.e. once the radiosity of the re-radiating surface is known, its temperature can easily be caleulated, since Ens=
&.T;*. Further, note that T, is independent of the emissivity of surface 3.

o Riz
iuriace;, Surface 2, Q o ¥ 12#’ 2 —» Ep o,
& T A ey T,
R - R, j (1 —e (A, )
Re-radiating surface 3, he=Ey = Ra=(-ellAe)
Q=0 Gy = Ry = 1A, Fry)

Ry3 = 1HA.Fy3)
Roy = A5 Fp3)
{a) (b)
FIGURE 13.34 Two grey surfaces surrounded by a re-radiating surface

Now, the radiation network reduces to a simple series—parallel circuit of the relevant resistances.
Expression for heat flow rate is:

Ep - Epy
Q1 =-Q,= ——2=
Riot
where, R, is the resistance, given by:
1
Rip =Ry + | -p ————| +R,
— + ————
Rip  (Ryz +Ry3)
fe. R, = [1 - E*J .- 1 -+ [1_52 J .{13.67)
A1'81 Az )
1
1 1 ]
+ —
LA-Ry Ag-Fy ) |
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13.7.5 Radiation Heat Exchange in Epp=dy Ry Epa=ds

Four-zone Enclosures AN Rz = 11AF)
(a) When alll the four surfaces are Rya Ry3 = 1H{A,.Fy3)
black Remembering the principles already ex-
plained, if the radiation network for an enclosure Ry Raa Ria = 1A F1d)

comprising of four black surfaces is drawn, it will Rys = 1AL Fp)
look as shown in Fig. 13.35.
Expression for net radiant heat flow rate from Raa = 1Az Fau)

surface 1 is: Rz = 1Ay Fe3)
_ _ _ Epy = 4 Ria Epa=dy
0, = h=I  h-1s h-ls
R R R
12 13 14 FIGURE 13.35 Radiction network for an enclosure of
ie. Q= Eyy —Epp , Ep1~Ess | Ey1—Epa four black surfaces
Ryp Ry3 Ryy
..since Eyy = ]y, et
ie. Qy = Ay Fip (Epy - Epg) + Ay Frae (Bpy — Epa)
+ Ay Frg (Eyy - Epg) .{13.68)

Similar expressions can be written for the net heat flow from other three sutfaces.
{b) When all the four surfaces are grey Now;, for each surface, a surface resistance also has to be included, and
the radiation network for this system will be as shown in Fig. 13.36:

Expression for net radiant heat flow rate from surface 1 is:

0, = En-h _h-h k-l Jizls

+
R Rz Rz Ryy

. Fp1 -
Le. = %e—h = Ay Fi (- ) + ArFag (=3 + Ay Fue(h - 1) .{13.68)
- i
[Al'glJ

Similar expressions can be written for the net heat flow from other three surfaces.

ANAN—
Eps Ry 4 Ry Jy R, Eps
Ry =(1—-g)lAg) Rz = (A.Fy2) Roy = 1A Fo3)
R, = (1 —e)l{Ayg5) Ry3 = MAFy3) Ry = 1A Fpy)
Ry = (1 —g3M(Ay.83) Ry = W(A.Fiq) Ryz = 1H{A4.Fy3)

Ry =(1-g(A )

FIGURE 13.36 Rodiation network for an enclosure of four grey surfaces

txomple 13.22. A long duct of equilateral triangular section, of side w = 0.75 m, shown in Fig. Example 13.22, has its
surface 1 at 700 K, surface 2 at 1000 K, and surface 3 is insulated. Further, surface 1 has an emissivity of 0.8 and surface
2 is black. Determine the rate at which energy must be supplied to surface 2 to maintain these operating conditions.
Solution. Since the duct is very long, the ‘end effects’ can be neglected. Therefore, this is a three zone enclosure, with
surface 1 being grey, surface 2 being black, and surface 3 being insulated (or, re-rediating).
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72 = 1000 K, Insulated @ Q=-&
Black
Ri=(1-¢ (A8}
- Ryz = 1(A.Fyp)
iy « Rys = H(AL.Fy3)
1=700 Ry = 1Ay Fpg)
(@) (b}

FIGURE Exomple 13.22 One black surface, one insuloted surface, and one grey surface forming an enclo-
sure, and its radiation netwark

Fig. Example 13.22 also shows the radiation netwark for this problem. This is drawn remembering the principles
already stated, i.e. {a) for a black surface, the surface resistance is zero, and E, = ], (b) for an insulated (or re-radiating)
surface, J = 0 and | = E,, (c) for a grey surface, add a surface resistance, (1 - £}/{A.8), and (d) connect the radiosity
potentials by the respective space resistances {1 /A F.

Data:

Let the length of the duct be 1 m

i.e. L:=1m (length of duct) W = 0.75 m (side of equilateral triangle) T, =70K g:=08
T=1000K  &:=567 x 10° W/(m’K} (Stefan-Boltzmann constant)
Now, we have, for view factors:

Fi+Fp+Fy=1 (by summation rule)
But, Fh=0 (since surface 1 is flat, and cannot ‘see’ itself)
Then, Fa+F=1
Further, by symmetry, F, = F;; for equilateral triangle.
Therefore, F;, =05
and, Fi3=05
Similarly, Fy3 =05
Since surface 3 is re-radiating surface, net heat transfer for that surface Q, = 0.
Therefore, =-0

And, radiation network is a simple series—parallel network as shown in Fig. Example 13.22 (b) above. Then, , is
determined directly as:

By - E
0, b1 bzl — W (a)
1
R +|—+
! [Ru Riy + Ry ]
. Ey, - E
ie. Ql = b] b2 -
1-g 1
+| AR+
Ag TR _1 1
AI'PB Az'pza
Areas:
A= WL ie A =075m? {area of surface 1)
and, for equilateral triangle:
A= 4
and, Ay = A
Resistances:
Surface resistance: R = 1-&
Ay g
ie. R, = 0333 m™
Space resistances:
1
Re= 275
1’
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ie. Ryp = 2.667 m™2

1
and, Ry =
AyFy
ie Ry; = 2667 m™°
1
and, i
Ay 'FZ!
ie. Ry = 2667 m™
Therefore, from Eq. a:
s
Ql = [ ( 1 2) ~ W (a)
1 1
R+|—+—"7-
' [Ru Ru"‘RzaJ
ie. Q, =-2041 % 10* W :
and, Q,=-0Q, =204 x 10'w (energy to be supplied to heated surface 2 per metre length. }

Exomple 1123, Two co-axial cylinders of 0.4 m and 1 m diameter are 1 m long. The annular top and bottom surfaces are
well insulated and act as re-radiating surfaces. The inner surface is at 1000 K and has an emissivity of 0.6. The outer
surface is maintained at 400 X and its emissivity is 0.4.
(i) Determine the heat exchange between the surfaces
(ii) If the annular base surfaces are open to the surroundings at 300 K, determine the radiant heat exchange.
If the outer cylinder is surface Z, take Fy= 0.25 and Fp= 0.27. (M.U. Dec. 1998)

1.0 m diameter R o rf
0.4 m diameter | Qj_;ag lating surface 3, Ry,

n Q
Surface 1, Eps Ji 12# S, > Epp )
\ Ay e, Ty @ Q=0
/ Surface 2, R Ry =(1—g(A2)
1.0m i Azt Ty B Cp. Fo R=(1-glhye)
; 3= Epa
Qy=0 Ryp = 1(A.Fyz)
Ry = 1A, Fis)
| : Ryy = W(AgFa3)
(a) (b}

FIGURE Example 13.23 Two gray surfaces surrounded by o re-radiating surface

Solution. See Fig. Example 13.23. Let the inner surface be denoted by 1, outer sutface by 2, and the two annular surfaces
by 3. Then, surfaces 1, 2 and 3 form an enclosure. And, the rediation network will look as shown in the Fig. Example
13.23.
Data:

D:i=04m Dyi=1m L=1m T;:= 0K  T,:=400K g:=06 g:=04

Fy =025  Fyp =027

o= 567 x 1078 W/{m?K) (Stefan-Boltzmann constant)

Areas:

A= Dyl ie Ay = 1257 m? {surface area of inner cylinder 1)
Aqp=m Dy L ie. Ay = 3142 m? (surface area of outer cylinder 2)

To find Fyy
Fi= {since surface 1 is convex, and does not ‘see’ itself)

A L
Then, Fyp = —Aile {by reciprocity)
1

ie. F), = 0.625 {view factor from surface 1 to surface 2)
Also, Fiu+Fz+Fp=1 (by summation rule)
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ie. Fiy=1-(Fy, + Fp)

ie Fi3 =0.375
' Also, Fu+Fp+Fp=1
ie. Fpy:=1-(Fy + Fpp)
ie. Fyy = 048
Emissive powers:
Ey= T ie.  Ey =567 x 10" W/m?
Ep = oT; ie.  Ep=1452x10° W/m?
Resistances:
1-¢
Ry= =2 ie. Ry =0531m>
1T A, 1
R,: 1-& ie R, = 0477 m?
T A, 2 = O
Ry = —2 ie. Ry;=1273m?
12 A F, - 1z =L
1 : 2
Ry = ie. R;=212m
A-Fy
Ry = — ie. Ry =0663m?
o i E e 2y = O
Case (i): When both the annular surfaces act as re-radiating surfaces:
We have: 0= ii
R +R,+R,

(view factor from surface 1 Yo surface 3}
(by summaion rule}

(wiew factor from surface 2 to surface 3)

(Emissive power of surface 1)
-(Emissive power of surface 2)

{surface resistance of inner cylinder 1)
(surface resistance of outer cylinder 2)
(space resistance between surfaces 1 and 2)
(space resistance between surfaces 1 and 3)

(space resistance between surfaces 2 and 3)

{(heat exchange between the surfaces)

The radiation network is as shown above. For the series—parallel network of resistances, we observe that R, and

(Ry3 + Rp) are in parallel. Therefore, effective resistance R, is given by:

1 1 1

—_— ¢ —
Ry Ry Ri3+ Ry

-1
. 1 1
ie. Ry (Ru + R+ Rza]
ie. Ry = 0.874 m™?
Therefore,
Q= _E..ui
Ri+Ryq4 +R,

ie. Q=293%x10'W

(effective resistance)

(heat exchange between the surfaces)

(heat exchange between the surfaces.)

In addition, for case (i), if we wish to determine the tempetature of re-radiating surface:

Apply the condition that for re-radiating surface, in steady state,
heat received by the surface = heat lost by the surface

ie. I1_]3 - Ia_fz
R13 RD
So, we have to determine J; and J,.
Now, Q=0=-
E. —
We have: = iﬁ-—h and, Qy = (2
1
ie. h=Eun-Qi'R,
ie 1 = 4112 x 10 W/m?

and,

E.—
Q= iﬁ;‘k and, Q, = -,
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ie. Jo = B - Qa'Ry

ie. 7, = 1.547 x 10* W/m*
Now, holb Lol {for re-radiating surface)
Ry Ry
Therefore, J3(Ri3 + Ry) = [1-Ry + 2 Ry3
ie. Jai= ]!'R13+IZ'R13
Ry + Ry
ie. J5 = 2158 x 10* W/m?
But, ;= Epy = T3
1
Therefore, T;:= (!1)4
a
ie T,=785429 K (equilibrium temperature of re-radiating swurface.)
Case (ii; When both the annular surfaces are open to surroundings at 300 K:
Now, Tourr == 30K (temperature of surroundings}
Further, Ey3= 0T o
ie. E, = 45927 W/m® {emissive power of surface 3 (i.e. surroundings))
and, 3= Ey
To find J, and J, Apply Kirchhoff's law to nodes J, and [;:
Ebl_Il I2_Il IB_II
At ] + + =0 (@
! Rl RIZ RIJ
Ep-Ip h-I -5
At J3 + + =0
& ER R ®

To get values of f; and ], solve Egs. a and b simultaneously:

We shall use solve block of Mathcad to solve Eqs. a and b:

First, choose trial (or, guess) values for [, and J,. Then, immediately after ‘Given’, write the constraints, i.e. Egs. a
and b. Now, type ‘Find (J, ;) = , and the result appears immediately: ’

J, =100 f,:= 100 (trial values)
Given
Ebl—Il + I2_Il + IS_II -0
Rl R12 R’l3
EbZ_IZ + II_IZ + IB_IZ =0
R, Ry Ry
3.591x 104
Find (., ) =
(e 12 [7.27&x103]
ie. J; == 3591 x 10* W/m’
and, J, = 7.278 x 10° W/m?
Therefore, heat lost by surface 1:
o Ebl “‘]1
Q= TR
ie, Q; =3919 x 10* W,
And, heat lost by surface 2:
E _
Q= ﬂij‘
ie Q,=-122x10* W.
Note that negative sign indicates that flow is into the surface.
Heat gained by surroundings:
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Il‘]s ]2‘]3

= === 4 L2
Qs R13 R13
ie Q.= 2699 x 10° W
Verify:
Heat gained by the surroundings must be equal to hea lost by the surfaces.
ie Q=0+ Q.
Q1+ Q,=2699 x 10 = Qs (verified.)

Exomple 13.24. Two parallel plates, 0.5 m x 1 m each, are spaced 0.5 m apart. The plates are at temperatures of 1000°C
and 500°C and their emissivities are 0.2 and 0.5, respectively. The plates are located in a large room, the walls of which
are at 27°C. The surfaces of the plates facing each other only exchange heat by radiation. Determine the rates of heat lost
by each plate and heat gain of the walls by radiation. Use radiation network for solution,

Assume shape factor between parallel plates: F, = F,; = 0.285, M.U. 1996)
Riz
Surface 1, En 4% s g,
Ay, E,=02, 1.0m Q Q=-0Q,
- o |y T
T, =1000°C H é' a,f%
1 0.5m . KR Ry = (1~ £, J(Ay.2,)
" 2 Ry=(1-e(Aye,)
Epy =y 2 E2)(Az 8y
e 2, , Riz = 1A Fiy)
2 € = 0.9, 0.5 m Surrounding reom (Surface 3), Ryz = (ALFyp)
T, =500°C ; T3=27°C, Ay >> (A, A,)) 137 1-F13
R23 = 1I(A2F23)
1.0m
(@ - {b)

FIGURE Example 13.24 Two grey surfaces surrounded by o large room

Solution,
This is a three-zone enlosure, and the radiation network for this system is shown in Fig. Example 13.24 (b} above.
Since the area A; of the room is very large, we can take the surface resistance of Aj; as equal to zero.

1-¢
ie. L=90
A&y

This means that Ey; = [, ie. a large room is equivalent to a black surface.

Data:
Ap=05m  A;=05m'  T;:=1000+273K T, =500+ 273K T3=27+273K g:=02
&§:=05 F,:=0285 F, :=0285 o= 567 x 10® W/(m?K) (Stefan-Baltzmann constant)

Now, Fu+Fp+Fp=1 (by summation rule)
But, Fy=0 (since surface 1 is flat and can not ‘see’ jtself.)
Therefore, Fa+F3=1
and, Fi3:=1-Fy
ie. Fi;3 = 0715 (view factor of surface 1 w.r.t. surface 3)
Similarly, Fyy = 0715 (view factor of surface 2 w.r.t. surface 3)
Resistances:
1-¢ .
R, = A_s] ie R =8m? (surface resistance of surface 1)
¥
1-¢ . N )
Ry= = ; ie. Ry=2m? (surface resistance of surface 2)
22
Ry = i lF ie Ry,=7018m? {space resistance between surfaces 1 and 2)
1512
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1

Ry = TR ie. Ry =2797 m? (space resistance between surfaces 1 and 3)
17113
Ry = — 11—‘ ie. Rp=2797 m? (space resistance between surfaces 2 and 3)
2 im
Heat lost by each surface:
Q= E'%L = heat lost by surface 1
_ Ebz - I -
and, : Q= —Rz = heat lost by surface 2
And, heat gain by surface 3:
Q=0+ Qn
ie. Q= I:_Is + I:‘JTS

R, Ry
Therefore, the problem reduces to calculating the radiosities, [,, J; and [;.
To calculate the radiosities [, and [,, apply Kirchhoff's law of electric circuits of nodes J; and J:

i En=5  L-h  Em-h _
Node J;: R, + R, + K, " ] (a)
Node Jy; lioh  Ench Bach o b

Ry Ry R,

Emissive powers:

Ey = T . je Ep = 1489 x 10° W/m? {for surface 1)
Epyi= 0Ty ie.  Epp = 2024 x 10 W/m? {for surface 2)
Epy = oTy i, Ep; = 45927 W/m? (for surface 3)
Note that: J3 = Epa (for the large room.)

To get ], and J,, solve Eqgs. a and b simultaneously. To do this, we shall use solve block of Mathcad.
First, choose trial (or, guess) values for J; and ;. Then, immediately after ‘Given’, write the constraints i.e. Egs. a
and b. Now, type ‘Find (J;, J;) =, and the result appears immediately:

J1 =100 Jz =100 ..brial values
Given
Ebl"']l + L‘._Il - Ebs'h =0
R, R, Ry
I]‘]; + Eha"]z + Ebz_h =0
Ry Ry R,
Find (. T2 3.3476 x 10°
ind (J;, Jo) =
YT 1,5057 x 10°
ie, I = 3.3476 x 10 W/m?
and, J» = 1.5057 x 10* W/m’
Therefore,
Heat lost by each surface:
. Ehl - ]1
Ql * Rl
ie. Q= l4ax 1w {= heat lost by surface 1.)
E. -
And, Q= M_Rfi
ie Q=259 x 10w (= heat lost by surface 2.)

Now, heat lost by both surfaces 1 and 2 is gained by the surroundings; so, heat gained by surroundings = Q5 = Q,
+(Qy

’ RADIATION - il




ie. . Q=0 + Qz‘

ie. 3= 1.702 x 10° W {= heat gained by surface 3.)
Verify: .
hets b IaJ
We have: Q, = [——-— 4+
TRy Ry
ie. Q;=1702x 10* W (= heat gained by surface 3...verified.)

13.8 Radiation Shielding

In practice, quite often, one or more ‘radiation shields’ are used to reduce radiant heat transfer between two
given surfaces. Radiation shield is, simply a thin, high reflectivity surface placed in between the surfaces which
exchange heat between themselves. Radiation shields may be made of aluminium foils, copper foils, or
aluminised mylar sheets, etc. Radiation shields are extensively used in building industry to reduce radiant heat
loss from or to the walls; in cryogenic industry as ‘super-insulation’ (i.e. alternate layers of an insulator and
reflector, e.g. glass fibre mat + aluminium foils or, aluminised mylar sheets, about 25 numbers per inch) to reduce
the heat leakage into cryogenic vessels or cryostats, in space industry, again as ‘super-insulation’ to reduce heat
in-leaks, etc. Radiation shield doe$ not participate in heat transfer, i.e. it does not add or remove heat from the
system as such, but reduces the heat transfer by interposing additional ‘resistance’ in the path of heat transfer.

We shall study how the heat transfer is reduced by the use of radiation shields, with reference to two infi-
nite, parallei plates, which exchange heat between themselves,

Fig. 13.37 (a} shows two large parallel plates, 1 and 2 exchanging heat between themselves; Jet their areas,
temperatures (in Kelvin) and emissivities be (4,, T}, &) and (A,, T,, &). Let a radiation shield 3, be placed be-
tween these plates. Plate 3 is thin and made of a material of high reflectivity. Let the emissivities of two sides of
the radiation shield be £, ; and &, ; as shown. Radiation network for this system is shown in Fig, 13.37 (b). This
is drawn, as usual, remembering that each grey surface has a ‘surface resistance’ associated with it, and the two
radiosity potentials are connected by a “space resistance’.

Shield
- Surface 1, A 2 T3 Surface 2,
A1v €y, T1 ""‘"'"'012 012 012 Az, Ez. Tz
{a)
Ep Jy UALFq3) - WA Fy) y, Ey,
Q VATV Ve
(1-e (A8 ! (1-e2M(Az85)

(1 —e31MAz.654) (1-g32)A3.855)
{b)
FIGURE 13.37 Radiation shield between two paorallel plates, and associated radiation network

When there is no shield, the radiation heat transfer between plates 1 and 2 is already shown to be:

A-oT! - T})

12 = 1 1
—+—-1
£ &

{for infinitely large parallel plates...(13.59))

With one shield placed between plates 1 and 2, the radiation network will be as shown in Fig, 13.17 (b)
above. Note that now all the relevant resistances are in series. Net heat transfer between plates 1 and 2 is given

3 as:

212 one shieid = (Ep1 — Epo)/ Ry where, Ry, is the total resistance.
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ie.
Ey —Epp
1-£ 1 +1—-‘-‘3_1 1—53_2+ 1, 1-g
Aey ArRs Ayen AyE Avhy Are
{for two grey surfaces with one radiation shield placed in between....(13.70))

Now, for two large parallel plates, we note:

F13=F32=1 and, A1=A2=A3=A
Then, Eq. 13.70 simplifies to:

Q!Z_one_shieid =

A-o(T} - T})

{212_one_shield = T 1 ) ]
[—+—-1)+ —+—-1
£ & €31 €32

Note that as compared to Eq. 13.59 for the case of no-shield, we have, with one shield, an additional term
appearing in the denominator of Eq. 13.71. Therefore, if there are N radiation shields, we have, for net radiation
heat transfer:

(13.71)

Aol -T)

2y e = .(13.72)
Nodiekh 9 1 1 1 1
— =1 —+—-1 |t —t -1
£ £ £31 &2 EN_1 €N2
If emissivities of all surfaces are equal, Eq. 13.72 becomes:
Ao (T -T) 1
G -B) Q12 ana) -(13.73)

Q2 e = =
- (N+1)-(%+%—-1) (N+1)

Note this important result, which implies that, when all emissivities are equal, presence of one radiation shield
reduces the radiation heat transfer between the two surfaces to one-half, two radiation shields reduce the heat
transfer to one-third, 9 radiation shields reduce the heat transfer to one-tenth, etc.

For a more practical case of the two surfaces having emissivities of £ and &, and all shields having the same
emissivity of g, Eq. 13.72 becomes:

Aol -T3)

Cizn e =
(]
g & &

To determine the equilibrium temperature of the radiation shield:
Once Q,, is determined from Eq. 13.71, the temperature of the shield is easily found out by applying the condi-
tion that in steady state:
Q=R =0x» -(13.75)
We can use either of the conditions: Q5 = Q3 or Qpp = U
Q,3 or Q, is determined by applying Eq. 13.59; i.e. we get:

(13.74)

Aol -T)

Qu=Qu=—7"17 ..{13.76a)
—_— = ‘1
£, £3
or,
Ao(Td-T
Qu=0Qn= —1L31—-3—) (13.76b)
—+—-1
£ £

In both the above equations, T; is the only unknown, which can easily be determined.
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For a cylindrical radiation shield placed in between two, long concentric cylinders:

Consider the case of radiation heat transfer between two long, concentric cylinders. The radiation heat transfer
between two long, concentric cylinders is already shown to be:

Ao -TF)

Qu= T A N wfor infinitely long concentric cylinders..(13.60)
1
& (Az) (-‘-‘2 J
where,
A _n
Ay 1

Now, let a cylindrical radiation shield, 3, be placed in between the inner cylinder (1) and the outer cylinder
(2), as shown in Fig. 13.38.

The radiation network for this system is shown in Fig. 13.38 (b) and it is exactly the same as shown in Fig.
13.37 (b). And, the radiation heat transfer between cylinders 1 and 2, when the shield is present, is given by:

Q o En —Epp
12_one_shield 1- £ R 1 R 1— £3 1 N 1- £ 5 1 1- £
A& ArRs Ayesy Aye, ARy Aye
{for two grey surfaces with ome radiation shield placed in between...(13.70))
Surface 1,
€y, Ty
Surface 2,
Ag & Ty
Shield3,
SO ’
o Ep Jy VAGF,5) VA Fy) Epa
1 —VVV—e—\ANA~——e
(1= M(Aqy.2,) 7‘ {1 -e0(Aze5)

1- €3.1)/(A3.65 1) {(1- 23’2)1(/’43.83'2)
(b)
FIGURE 13.38 Radigtion shield between two concentric cylinders, and associated radiation network

Now, for the cylindrical system, we have:

Fi3=Fy=1

A] = 2‘7[‘?’1‘!_

Ay=2-mwryL
and, A3 =2.7wr,-L

Then, Eq. 13.70 reduces to:
Ao (T -T)
Qr2ore_shield = . P 1 1
—_ +[_1J.(;_ 1J+[__1_] _lm+__1 _.]_
g \A)\le Ay jl &34 &,

{for concentric cylinders with one radiation shield...(13.77))
In Eq. 13.77, we have: (A,/A;) = (r,/r,), and (A1/Ay) = (r)/1r3).
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Note that as compared to the relation for two concentric cylinders with no shield (i.e. Eq. 13.60), an addi-
tional term appears in the denominator of Eq. 13.77 (i.e. the third term} when cne radiation shield is introduced;
if there is a second radiation shield, say (4), then one more similar term will have to be added in the denominator
to take care of the resistance of that shield.

In this case, too, the equilibrium temperature of the shield is determined by applying the principle that, in
steady state,

Qi = Qi = L
For a spherical radiation shield placed in between two concentric spheres:
This case is also represented by Fig. 13.38 (a), where inner sphere 1 is enclosed by an outer sphere 2, and a
radiation shield 3, is placed in between. The radiation network for this system is shown in Fig. 13.38 (b).
When there is no radiation shield, radiation heat transfer between surfaces 1 and 2 is given by Eq. 13.61, i.e.

Ao (T -T)

L{ﬁ).[i_lj
6'1 A2 £y

4 _(aY)

Ay n

Again, when the radiation shield is present, the general relation for radiation heat transfer between surfaces
1 and 2 is Eq. 13.70. Remembering that for concentric spheres,

Qi = (for concentric spheres...(13.61))

where,

Fig=Fp=1
Ay =4 mrd
Ay =d-mr)
and, Az = 441'-:'32

relation for radiant heat transfer between surfaces 1 and 2, is exactly as Eq. 13.77, i.e.

Aol -T})

Qizone_shield =
l+(ﬁ].(_£_1J+[ﬁl). ¢+¢_1J
g \AJ\& Az )l E3 1 &3

{for concentric spheres with one radiation shield...(13.78))

2 2
_{li = .{-L and ﬂ = T_l
Ay \nm " A 5!

In this case also, equilibrium temperature of the shield is determined by applying the principle that, in
steady state,

In Eq. 13.78, we have:

Quz = Qs =L

Example 13.25. Two large parallel planes facing each other and having emissivities 0.3 and 0.5 are maintained at 827°C
and 527°C, respectively. Determine the rate at which heat is exchanged between the two surfaces by radiation. If a
radiation shield of emissivity 0.05 on both sides is placed parallel between the two surfaces, determine the percentage
reduction in the radiant heat exchange rate. (M.U., Jan. 2002)
Solution. This is the case of one radiation shield placed in between two parallel plates. See Fig. Example 13.25.
Data:

T, =827 +273K T,=57+273K §:=03 §:=05 £ =005 &:=005

&= 5.67 % 10°° W/(m’K) {Stefan—Boltzmann constant) A =1 m? (surface area of plates...assumed)
{a) Heat exchange between surfaces 1 and 2, when there is no shield:

4 _ i
Qp = A'—f'g!i—:—w w (for infinitely large parallel plates...(13.59))

AR B
& &
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Surface 1, Shield T,

g, =0.3, €y = 0.05 €3, =0.05 Surfa;c; 2,
T, =827°C |—»Q Q Q €, =05,
1 12 12 12 T, =527°C
@
Ep1 Jy WA, .Fyo) WA Fy) 4, Epe
@ —NN\——AAN—e
(1-e (A, £,) 7/ (1-e2)(A285)

(1231 M(Aze94) (1~ &50(Age5,)
b
FIGURE Example 13.25 Rodiction shield between two parallel plates, and associated radiation network

ie. Q12 = 1.38 x 10* W/m? (radiant heat transfer, without shield.)
- Now, we have for radiant heat transfer between surfaces 1 and 2; when there is one shield in between 1 & 2:

. Ao -T)
Q]Z_cme_shield =
[1 1 J{l 1 J
—t+— 1|+ —+—-1

ie. 212 one_shild = 1.38 x 10° W/m? (radiant heat transfer, with one shield.)
Therefore, percentage reduction in heat transfer due to radiation shield:

(1.38 x10* - 1.38 x 10%)

.{13.71)

QIZ - le,me‘shield

Reduction = 100 = 4 -100
10 1.38x 10

ie, Reduction = 90%.
In addittion, if we wish to find out equilibrium temperature of shield:
Let the equilibrium temperature of shield be T,

In steady state, we have:

Q12_one_shietd = Q13 = Qm

Q; is already calculated. Qy; or Qy; is calculated using Eq. 13.59.

Let us take: Q12 _one_shietd = Ch3
. Ac(TH-T#
Le. ©12_one_shield = 1—(11—“&

— 4 —=1
& &y
1
1 1 4
212 one_shield (E_ + P 1J
ie. Ty:= [T - L
- Ao
ie. T, = 979.537 K
or, Ty = 706.537°C (equilibrium temperature of shield.)
Verify: Use the equation: Q) gne shietd = R
We get, writing for Q,,:
Aa (T} -ThH
le_one_shield = 1 1
——1
£ Ep
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ie. Ty = 979537 K (same result as obtained above.)
Example 13.26. Two very large paraliel plates with emissivities 0.3 and 0.7 exchange heat. Find the percentage reduction
in heat transfer when two polished aluminium radiation shields (E = 0.4} are placed between them. (M.U., Dec. 2000)
$olufion. This is the case of two radiation shields placed in between two parallel plates.
Data:

£ =03 &:=07 §:=04

Then, with no radiation shield, we have the radiant heat transfer:

A-gTE T4
O = 1"_(11_1_) w {for infinitely large parallel plates...(13.59))
— 1
& &

and, with 2 radiation shields, the radiant heat transfer is:

Ao(T}-TH

Q1 2two_shields = T 5
—+—-1{+2/(—=-1
£ & £,

Therefore, dividing the above two equations, we have:

(from Eq. 13.74)

1 1
et —-1
Qo v _ & &
Qlljlo,shield [l + i _ IJ + 2(i + _1_ - 1)
£; £; s s
ie. Liwn _ g3
Qi2_ro. shield

i.e. by introducing 2 radiation shields, the heat transfer is reduced to 32% of that without the shields.
Example 13.27. The net radiation from the surface of two parallel plates maintained at temperatures T, and T, is to be
reduced by 79 times. Calculate the number of screens to be placed between two surfaces to achieve this reduction in heat

exchange, assuming the emissivity of screens as 0.05 and that of surfaces as 0.8. (MU}
Solution. This problem is on parallel plates with more than one radiation shields.
Data:

£:=08 5:=08 £ :=005 £:=005 0:=567x 107 W /(m?K) (Stefan—Boltzmann constant)
Let N be the number of screens required.
Then, with no radiation shield, we have the radiant heat transfer:

(T T*
O = -{1;’—(‘1—#) w (for infinitely large parallel plates...(13.59))
—+—-1
£ &
and, with N radiation shields, the radiant heat transfer is:
Ao (TH-TH
212N _shields = T ! 12 1 {from Eq. 13.74)
[—+—-—--1)+N-(——+-—1J
LI Y £ Es
Q e 1
Then, by data: ugsmjg = & 5 N == .(a)
2 [i+i—1 +N|—+ 1
£ & & Lo

Solving Eq. a, we get N, the number of screens required.
We get:
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ie. N=3 (number of screens required to reduce heat loss by 79 times.)
Example 13.28. A 10 mm OD pipe carries a cryogenic fluid at 80 K. This pipe is encased by another pipe of 15 mm OD,
and the space between the pipes is evacuated. The outer pipe is at 280 K. Emissivities of inner and outer surfaces are 0.2
and 0.3, respectively. (a) Determine the radiant heat flow rate over a pipe length of 5 m. (b} If a radiation shield of
diameter 12 mm and emissivity 0.05 on both sides is placed between the pipes, determine the percentage reduction in
heat flow. (cj What is the equilibrium temperature of the shield?

Solution.

Cylinder 1,
£,=202 7,=80K

£,=03, T, =280 K

|~ Shield 3, T,
€3, =0.05, €5, =0.05

3 L ry=0.005m
— 4 ;= 0.006 m
rp=0.0075m

E
o Ept Jy V(AyFya) WA3F) g, Epa
1 VNN — NV \NN——8

(1= e V(Are,) 7 (1= eM(Ay 5)
(1—251M(A38q4) {1 —e32)(Aq.855)
{b)

FIGURE Example 13.28 Raodiation shield between two concentric cylinders, and associated radiation network

Data:
ry = 0.005 m ry == 0L.0075 m ry:= 0,006 m T, :=80K T,:=280 K g =02 & =03
£ =005 £:=005 o=567x10¢W/mK) L:=5m
Surface areas for 5 m length:

Ay =2-mr L ie. A; = 0157 m? (surface area of inner pipe)
Ay:=2-mryL i-e. Ay = 0.236 m? (surface area of outer pipe)
Ayi=2-mryl ie. Ay = 0188 m? (surface area of radiation shield)
(a} Heat transfer without the shield being present:
We have:

T 4 _ T4
Q, = el -T) ] (for infinitely long concentric cylinders...(13.60))

i + i . i -1
g A Jlg
ie. Qp=-8295W

Note that negative sign indicates that heat flow is from outside to inner pipe.

{b} Heat transfer with one shield being present:
Now, we have, for heat transfer,

Ao (T} -TH

Q12 one_shield =
1{&}.[_1_1J+[QJ.[L+L_1
& Ay )L g, A Jlen &y

ie. (g oneshield = —1.392 W {for concentric cylinders with one radiation shield.)

J {for concentric cylinders with one radiation shield...(13.77))

Again, note that negative sign indicates that heat flow is from outside to inner pipe.
Therefore percentage reduction in heat flow due to shield:
(8.295 - 1.392)

100
8.295

Reduction =
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ie. Reduction = 83.219%.
(<) Equilibrivm temperature of shield:
Let the equilibrium temperature of shield be T,
In steady state, we have:
Ql?._onc‘_shiuhl = Qu =Dy
(12 with one shield is already calculated. Q)5 or Qy, is calculated using Eq. 13.59.

Let us take: QlZ,um‘,shie]d = Ql.’!
. Ao (T T
Le. Q]Z_onefshiuld = “J*(l'i_)'_' X
1 (AN
Y [Pt I N p—
g LA ) gy

1 (A 1 *
2_one, shivl T — | _1
. Q1o one shicld {51 ‘*‘[AJ (831 ]J
' Ao

ie Ty:=

ie. T,=239639 K

or, T, = 33.361°C (equilibrium temperature of shield.)
Verify: Use the equation: Qlqune,‘shield - Q]Z

We get, writing for Q4
Ay a(T) - TY

Qu,onu)hield =
e
Exp Ay J e

1
i (4,1 !
] == || — =1
QlZ,una_shuld [{"32 (AZJ [5‘2 JJ

A6

ie. Ty= | T+

ie. Ty= 239639 K {same result as obtained above.)
Example 13.29. A spherical tank with diameter D, = 40 cm, filled with a cryogenic fluid at T, = 100 K, is placed inside a
spherical container of diameter D, = 60 cm, maintained at T, = 300 K. Emissivities of inner and outer tanks are &, = 0.10
and & = 0.20, respectively.
(i) Find the rate of heat loss into the inner vessel by radiation
(ii) If a spherical radiation shield of diameter D; = 50 cm, with an emissivity £ = .05 on both surfaces is placed
between the spheres, what is the new rate of heat loss? (M.U. Jan. 2002}
Solufion. This is a problem on spherical radiation shield. See Fig. Example 13.29 for schematic and the associated radia-
tion network.
Data:
rp:=02m ry =03 m ryi=025m T =100 K T, =300 K g =11 & =102 &y = 0.05
£y := 005 =567 x 107 W/(mK)

Areas:
Ap=dmr? ie. A, =0503 m?
Ayi=domrf ie. A, =113l m?
and,  Ayi=4-7r? i Ay;=0785m’

(a) When there is no radiation shield:
We have, for radiation heat transfer between two concentric spheres:

Ao (T =T))

Q= (for concentric spheres...(13.61))
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Sphere 1,
=01, T, =100 K

Sphere 2,
e,=02T,=300K
T Shield 3, T3
ﬁ €39 =0.05, €5, =0.05
S a1 =0.2m
—{ rR=0.25m
rL,=03m
(a)
o Epy Jy H(ALFa) 1A3Fs) y, Epa
1 —ANNV—— A8
(1 —eq)(A, ) / (1-e;0(A85)

(1 — &5 1 M(Age54) (1 - 25 )0 A5.85 )
(b)

FIGURE Example 13.29 Radiation shield between two concentric spheres, and associated radiation network

ie. Qi = -19359 W (radiation heat transfer when there is no shield.)
Note: Negative sign indicates that heat transfer is radially inwards, i.e. from outer sphere to inner sphere.
(b) When the radiation shield is present:
For radiation heat transfer between concentric spheres with a radiation shield placed in between, we can directly use the
Eq. 13.78. However, we shall work from fundamentals, and use the Eq. 13.70, written for the radiation network shown
above, and then verify the result from Eq. 13.78:
Now, we have from Eq. (13.70):
Q12 one_shield = Ebl _Ebz
—one 1-.:5'1+ 1 +1—£31+1—£n 1 +1~£2
Avey Ak, Ayey Ayep AcEy Ay
(for two grey surfaces with one radiation shield placed in between...(13.70))

Emissive powers:

Ey =T} ie. Ey = 567 W/m* (Emissive power of surface 1)
Eyi= T} ie.  E, = 45927 W/m® (Emissive power of surface 2)
View factors:
Fi3=1 (since all radiation emitted by surface 1 is intercepted by surface 3)
Fyp=1 (since all radiation emitted by surface 3 is intercepted by surface 2)
Resistances:
1-¢ .
Ry:= y) E’ ie. R, = 17.905 m? (surface resistance of surface 1)
151
Ry := n -1F ie. Ry;=1989m? (space resistance between surfaces 1 and 3)
1 713
1-
Ry, = A—? ie. Ry =24192 m? (surface resistance of 3, facing surface 1)
37%3
1-¢
Ry = ) ;2 ie. Ry = 24192 m? (surface resistance of 3, facing surface 1)
3 En
Ry = y -1F ie. Ryp=1273m? (space resistance between surfaces 3 and 2)
3 R
1-& : -2 i
R; = A ie. R; =3537 m (surface resistance of surface 2)
2752
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Then, from Eq. 13.70:

Q . i Ebl - E!ﬂ
12_one_shield = T=7 1 1-¢g, 1-£4 1 1-g,
+ + + +
Avey ARy Ayey Ajey AyE, Ayve
ie. 212 one shield = —6.206 W (heat transfer between spheres, with radiation shield being present.)

Note: Negative sign indicates that heat transfer is radially inwards, i.e. from outer sphere to inner sphere.
Verify: :
We have, from Eq. 13.78:

Al'o-('I;"—Tf)
QlZone_shield =
— =] —~1|+| L] —+—-1
g \A)lg Ay J\En Ep

2 2
where, ﬂ = and, ﬁ =
Ay e} A; L]

i.e. we get:

(for concentric spheres with one radiation shield...(13.78))

Ao (T} =T}

QlZ_une_shieId = 1 H 1 2
_+[a] .[__1]+[g] .[_L,,_l__l)
& n £, e £y €x

ie. 212_one_shield = —6.206 W (verified.)
In addition, if we wish to find out the equilibrium temperature of the shield:
{c) Equilibrium temperature of shield:
Let the equilibrium temperature of shield be T,
In steady state, we have:

Q12_one_shietd = Q13 = Qa2
Q;; with one shield is already calculated. ;5 or Q5 is calculated using Eq. 13.61.

Let us take: 212_ome_shield = 13
. Ao (TP -T}
ie. 12 one_shield = 1o - 7;)
a)E)
— |2 [—-1
£ \A; ) &q
1
1 (A1 *
Qrz_onestioa”| —+| =2 || = -1
. " g \Az )&y
ie. Ty=|T - Ao
ie. T, = 264919 K
or, T; = 8.081°C (equilibrium temperature of shield.)

Verity Use the equation: Qy; one shierd = @3
We get, writing for 0y,

Ay -0-(T3 =T

L+[éa_}{i_1]
Ex A Jl e

12 one_shield =
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ie. Ty = 26491% K (same result as obtained above.)

13.9 Radiation Error in Temperature Measurement

An important application of radiation shields is in reducing the radiation error in temperature measurement. To
explain this, consider the case of a hot fluid at a temperature T,, flowing through a channel, whose walls are at a
temperature T, Let the convective heat transfer coefficient between the fluid and the thermometer bulb be 4. To
measure the temperature of the fluid, a thermometer (or a thermocouple) is introduced into the stream, as shown
in Fig. 13.39 (a).

TCK‘_ Thermometer T Thermometer
l | /TW j ‘/Tw
Tph —> U/ Toh —»
qcorw/v \A Grad Co T
*— Tw »— Tw
(a} Thermometer without radiation shield (b) Thermometer with radiation shield

FIGURE 13.39 Radiation shielding of thermometers

Let the reading shown by the thermometer be T,. This reading, however, does not represent the true tem-
perature of the fluid T, since the thermometer bulb will lose heat by radiation to the walls of the channel which
are at a lower temperature T, (which is usually the case). So, in steady state, the thermometer bulb will gain heat
by convection from the flowing fluid and will lose heat by radiation to the walls, and as a result, the temperature
T, shown by the thermometer will be some value in between Trand T,

We wish to find out the true temperature of the fluid T}, by knowing the thermometer reading T,.

Making an energy balance on the thermometer bulb, in steady state, we have:

Without radiation shield:

eonv to the bulb = g, from the bulb

ie. hA(T-T) =& A (T} =T

4 4
ie. T, =T, + £ole ~Ty) (13.79)
where,

A, = surface area of thermometer bulb,
£ = emissivity of thermometer bulb surface.

Eq. 13.79 gives the true temperature of the fluid T;. Second term on the RHS of Eq. 13.79 represents the error
in temperature measurement due to radiation effect. It is clear that radiation error can be minimised by:

(i) having low value of £, i.e. high reflectivity for the bulb surface

(ii) high value for convective heat transfer coefficient, /1.

In practice, even if we start with a thermometer bulb surface of high reflectivity, soon, the emissivity value
rises to about 0.8 or 0.9 due to deposit formation, corrosion or erosion of the bulb surface, etc.

So, the most practical way to reduce the radiation error in temperature measurement is to provide a cylindri-
cal radiation shield around the thermometer bulb, as shown in Fig. 13.39 (b). Then, in steady state, the shield
temperature (T,) will stabilise somewhere in between the fluid temperature Trand the wall temperature T,,. Then,
in Eq. 13.79, T,, will be replaced by the effective shield temperature T, '

Energy balance on the thermometer bulb:
Heat transferred to the bulb from the fluid by convection = Heat transferred from the bulb to the shield by
radiation,

oI} - T
1-g.0, 1 [l-&
Ac'gc AE'FCS As'Es
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In Eq. 13.80, F,, = view factor of thermometer bulb w.r.t. the shield and is, generally equal to 1.

In the RHS of eqn. (13.80), first term in the denominator represents surface resistance of the bulb, second
term is the space resistance between the bulb and the shield and the third term is the surface resistance of the
shield.

Now, making an energy balance on the shield:

(heat transferred to shield from the fluid by convection + heat transferred to shield from bulb by radiation) = heat
transferred from shield to walls by radiation

oI - T}

(l—ec)_'_ 1 +[1—85J
Ac'gc Ac'ch As'gs

= area of shield on one side
emissivity of shield surface
area of bulb surface
£, = emissivity of bulb surface
F,, = view factor of bulb w.r.t. shield.
In the first term of the above equation factor 2 appears since convective heat transfer to the shield occurs on
both surfaces of the shield. Also, in writing the RHS, the inherent assumption is that:

ie. 2-Ach-(Tp-T,) + =g A0 (T -TH -(13.81)

where,

N

As
&
AL'

F,=1 (view factor between the shield and the walls)
and,
%v =0 (i.e. surface area of shield is negligible compared to the area of the channel walls.)
w

Solving Eqgs. 13.80 and 13.81 simultaneously, we obtain the shield temperature T, and the thermometer read-
ing T,, (if Ty is known), or T; (if T; is known).
Example 13.30. Hot air is flowing in a duct whose walls are maintained at a temperature T,, = 450 K. A thermocouple
placed in the stream shows a reading of 650 K. If the emissivity of the thermocouple junction is £ = 0.8 and the convec-
tive heat transfer coefficient between the flowing air and the thermocouple is # = 85 W/(m?C), find out the true tempera-
ture of the flowing stream.

(b) Now, if a radiation shield (£, = 0.3} is placed between the thermocouple and the walls, what will be new value
of T, read by the thermocouple? And, how much is the temperature error? Take A /A, = 1/5.
$elution. In case (a), there is no radiation shield and in case (b), the radiation shield is present. Both these cases are
shown in Fig. Example 13.30 {a) and (b).

Data:
T, =450K T.:=650K h:=8W/(m’C) &£:=08 ¢£:=03 %ﬁ— = %
o= 5.67 x 1078 W/(m*K) (Stefan—Boltzmann constant.)
Case {a}: When there is no radiation shield:
In steady state, making a heat balance on the thermocouple bead, we have:
Jeonv = Hrad
Thermometer, Thermoemeter,
T,=650K . T, =7
| x Tw=450K | par
) / et T, =03
Ti.h = 85 WI(m“C) —»
t (m“C) £, =08 Tnh —»
Yoo —"T \ % T
L — - T,
(a) Thermometer without radiation shield (b} Thermometer with radiation shield

FIGURE Example 13.30 Radiation shielding of thermometers
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ie. hAAT-T)= o6 AT - T,
LTt ot
ie. Ty=T, + f-f-(-%——]i) .{13.79)
ie. T,;=723.376 K {true temperature of air stream, when there is no radiation shield
Therefore, radiation error = Ty - T, = 73.376 deg,.
Case (b): When the radiation shield is present:
Making a heat balance on the thermocouple bead:

3 4 _ 4
hAAT-T) = ol - 1) ..(13.80)
1-£, 1 1-¢
+ +
Ar'ec Ac'Pa As'ss
where, F.=1 (view factor for thermocouple bead w.r.t. shield.)
Then, Eq. 13.80 becomes:
R ) 4 _7d
hAT,- Ty = T AT =T
-
— | e ==1
£ A )L e
. ATE _ T4
ie. heAc(T - T,) = oA T ()
1 (1) [ 1 ]
—t| =] =1
Ec 51 &
Next, making a heat balance on the shield:
) 4+ _ T4
2 A (T;-T) + AL ) = A o (Th- T, {1381)
1-¢ 1 1-&
+ +
[Ac'gcj AEs (As'EsJ
where,
A, = area of shield on one side
& = emissivity of shield surface
A, = area of bulb surface
€, = emissivity of bulb surface
F.; = view factor of bulb w.r.t. shield = 1
Fo,=1 (view factor between the shield and the walls)
and,
% =0 (i.e. surface area of shield is negligible compared to the area of the channel walls)
Then, Eq. 13.81 becomes:
. . 4_ T
24,h(Ty-T) + —LAT 7 L) pa omi-T,
)
—+]Ze =1
SE AS SS
ie 2. ﬁ.h.(T_T)+___Eﬁ___T:)_~gs. ..A..i co(TA-T.H
L. A = 1s 1 R A1 : A s w
EC AS 85
(T4 _T4
ie. 10-h-(T; - T) + —= O L) - .5 0T - T,Y, since %ﬂ-:-;- ®)

1 1 1
B
Now, Ty is already known, and solving Eqs. a and b simultaneocusly, we get T, and T,.

To do this, we use solve biock of Mathcad. We start with trial values of T, and T, and write the constraint Eqs. a
and b immediately after typing ‘Giveny’. Then, typing ‘Find’ (T, T,) = gives immediately the values of T, and T,.
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T,:=100 T,:=100 (trial values of T, and T)

Given
a (T -T2
hity- 1y = —Z4 T (@)
1 (1) [ 1 J
— %= =-=1
£, 5/ &
o(T} - T} ! 1
0:h(Tp=T) + ——— S = (5 0T} - T.) (®)
R
g, \5)le&
716.327
ind (T _
Find (T, T) [703.655]
ie. T, =716.327 K (value of thermocouple reading, when the shield is present.)
And, T, = 703.655 K (temperature of shield.)

Therefore, radiation error = Tf - T, =7.049 deg.
Note: When there is no radiation shield, the error in thermocouple reading is 73.376 deg. and when the radiation
shield is introduced, the radiation error is reduced to just 7.049 deg.

13.10 Radiation Heat Transfer Coefficient (h )

Concept of “radiation heat transfer coefficient” is useful in solving problems where heat transfer occurs by both
convection and radiation. Typical examples of such a situation are: heat loss from a steam pipe passing through
a room, heat loss from hot combustion products passing through a duct, heat loss from the walls and door of a
furnace, etc.

Radiation heat transfer coefficient is defined in a manner analogous to convection heat transfer coefficient.
Consider hot gases at a temperature T, flowing through a tube whose walls are at a temperature of T,. Then,
tecollect that the convective heat flux is given by:

Qconv = hc'(Tg - T,)
where, k. = convective heat transfer coefficient.
In a similar manner, we write for radiant heat flux from the pipe:
Aead = hr' (Tg - Tw)
where, i, = radiation heat transfer coefficient.
For the above case, A, is determined from:
hAT, - Ty) = e o (T - T,})

£0(Ty - Ty)

ie. hr =
(Tg - Tw)
ie. h = &0 (T + T,0) (T + Ty) W/(m’C) .(13.82)
Then,  Gut = Geonv * Traar Py a linear superposition of both heat fluxes.
=k (Ty =Ty + b (Ty = Ty)
= (b +h) (T, - Ty) -(13.83)

For any other configuration, we can determine , if we know the expressin for radiant heat flux. For exam-
ple, for radiant heat transfer between two large parallel plates, we have:

Q _ o(i-T)

e 1,1 = b Ty - T2}
£ 2]
o (T2 + TR +Ty) 2 .
Le h = 1 W/(m*C) (for two parallel plates...(13.84))
RV |

g &

Note that radiation heat transfer coefficient is a strong function of temperature, unlike the convective heat
transfer coefficient.
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Gaslayer 13,11 Radiation from Gases, Vapours and Flames

So far, we have dealt with radiation heat exchange between surfaces in an
hH{x) enclosure, with a non-participating medium, in between, i.e. the interven-
ho——>{ —» hy ing gas neither absorbs nor scatters the radiation nor does it emit any radia-
tion; in other words, the intervening gas does not, in any way, affect the
radiant heat transfer between the surfaces. Such an assumption is valid for

x=0—— x=L mono-atomic gases such as argon and helium, and for diatomic gases such
T X as oxygen and nitrogen; these gases are extremely inert to thermal radia-
—» gy tion. However, the same thing is not true for poly-atomic gases such as

CO;, H,y0 {vap), NH, and hydrocarbon gases; these gases do absorb and

FIGURE 13.40 Absorption of  emit radiation. Further, radiation from solids and liquids generally covers

monochromatic radiation the entire wavelength range whereas radiation from gases is over selected

in a gas layer wavelength ‘bands’. Also, note that radiation from solids is a ‘surface phe-
nomenon’ whereas that from gases is a ‘volumetric phenomenon’.

13.11.1 Yolumetric Absorption and Emissivity
In gases, absorption of radiation depends upon the absorption coefficient «; (1/m) and thickness L of the gas
layer, in addition to the temperature T, of the gas. Fig. 13.40 shows a monochromatic beam of intensity Iy,
impinging on the gas layer at x = 0; its intensity decreases as a result of absorption and at x = L, let the intensity
be [;;.

We wish to develop a relation between the initial and final intensities: If [ ; is the intensity at any x, the
reduction in intensity occurring in an infinitesimal layer of thickness dx is given by:

dl;(x) = —x; I (x)-dx
Separating the variables and integrating from 0 to L, i.e. over the entire thickness of gas layer, we get:

1 L
J“L 1 dI,l(x):kalex

L 13 (x)
where, the absorption coefficient x; is assumed to be independent of x.
We gel:
I
—L = exp(-x;L) .(13.85)
Lo

This is known as Beer's Law. '
Le. the intensity of radiation decreases exponentially with thickness as it travels through the gas layer.

LHS of Eq. 13.85 is monochromatic transmissivity r; of the gas. Also, in general, gases do not reflect radia-
tion, i.e. their reflectivity is zero. Therefore, we write:

ap+ ;=1
ie. a;=1-1,
ie. a; =1 -exp(-x;-L) (monochromatic absorptivity of gus...(13.86))
Then, from Kirchhoff's law, since absorptivity is equal to emissivity, we have;
ie, £ =1-exp(~x-L) {spectral emissivity of gas...(13.87))
From Eq. 13.87, one can see that if gas layer thickness, L is very large,
a‘l = El =1

i.e. for very thick layers, radiation from the gas is equivalent to a black body radiation.

13.11.2 Gaseous Emission and Absorption
As mentioned earlier, gases are ‘selective’ absorbers and emitters, i.e. gases absorb or emit radiant energy only
within certain wavelength bands. Beyond these wavelength bands, these gases are transparent (or diathermic) to
thermal radiation. In thermal engineering, we are particularly interested in CQ, and H,O vapour, since these are
the main products of combustion of fuels.

Following wavelength bands are of importance for CO, and H,0 vapour:

For CO;:

Band 1: A =240 to 3.80 microns

Band 2: 1 =4.01 to 4.80 microns

FUNDAMENTALS OF HEAT AND MASS TRANSFER



Band 33 A =125 to 16.5 microns

For H,O vapour:

Band 1: A =2.24 to 3.27 microns
Band 22 A = 4.80 to 8.5 microns
Band 3: A = 12.0 to 25 microns.

As discussed earlier, intensity of radiation decreases as it passes through a gas layer; this ‘attenuation’ in
intensity is proportional to the path length ‘L’ and the partial pressure ‘p’ of the gas (in a mixture of gases).
Emissive power of a gas is proportional to the gas temperature T, and the product {p.L). From the experimental
data for CO, and H,0, following empirical relations for the emissive powers of CO, and H,O have been sug-

gested:
1

1 3.5
Eco, = 3.5-(p~L)3-[ﬁ} kcal / (m?hr.)

EH20 _ 3'5_p0.8.L0.6_ [1;36

..(13.88)

3.0
J keal/(m?hr.) ..(1389)

where, p = partial pressure (atm) and L = layer thickness ( m}.

(Note: 1 keal/(m?hr) = 1.162 x 1070 kW/m’).

For a diffuse surface, radiation is emitted in all directions. Therefore, path length L depends on direction and
shape of the body. For calculation purposes, a ‘mean path length of beam’ (L) is defined as follows:

L= 3.6-[K] m
A

{mean path length...(13.90))

where, V is the volue of the body (m%), and A is the surface area of enclosure {m?).
Emissivity of gases is a function of gas temperature T, total pressure p of the gas mixture, partial pressure p,

of the radiating gas and the mean path length, L.

0.8 T
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FIGURE 13.41 Emissivity of water vapour in a
mixture of other gases which are non-rodiating,
at o total pressure of 1 atm. (Source: Incropera, Frank
P and David P Dewitt [1998]. Fundamentals
of Heat and Mass Transfer. Pub.: John Wiley & Sons)

Emissivity of water vapour {&,) in a mixture of
other gases which are non-radiating, at a total pressure
of 1 atm. are plotted, as a function of gas temperature
T, and the product of partial pressure of water vapour
and the mean path length, {p,.L), in Fig. 13.41:

To determine emissivity of water vapour when the
total pressure is different from one atm., multiply the
value obtained from Fig. 13.41 by a correction factor
(C,,). obtained from Fig. 13.42:

,Similarly, Fig. 13.43 shows a plot of emissivity of
carbon dioxide gas in a mixture of other gases which
are non-radiating, at a total pressure of 1 atm. and the
Fig. 13.44 shows correction factor C, for emissivity of
carbon dioxide, when the total pressure is other than 1
atm.

When water vapour and carbon dioxide appear to-
gether in a mixture of other non-radiating gases, tofal
gas emissivity (&) is expressed as:

E =&yt £~ Ag .(13.91)

In Eq. 13.91, Ae is the correction factor, read from
Fig. 13.45. Note that total emissivity is less than the
sum of the individual emissivities of water vapour and
carbon dioxide because of mutual absorption of radia-
tion between these two gases.

Mean path length (1) to be used in Figs. 1341 to
13.45, for various geometries, are given in Table 13.6:

RADIATION




18 P L= 0-0.050-atm
0.25
_/
1.6 i 0.50
/
14 /V% L 32
5.0
S 2 e ——1%0
- el
§
£ 10
5 os
=
@ 7z
z 06 /A‘//
$ 7
04 ////
74
0.2 ,//
0 0 0.2 0.4 0.6 0.8 1.0 1.2

(D, + Y2 (atm)

FIGURE 13.42 Correclion factor for emissivity of water vapour when the total pressure of mixture is other
than 1 atm. (Source: Incropera and Dewitt [1998]. op. cit.)
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FIGURE 13.43 Emissivity of carbon dioxide in @ mixture of other gases which are non-radiating, ot a total
pressure of 1 atm. {Source: Incropera and Dewitt [1998]. op. cit.)

Once the emissivity (£,) of the gas mass in the given geometry is determined, we can proceed to find out the
radiant heat transfer from the gas mass to the surface of enclosure:

If the surface is black: Radiation emitted by the gas mass is completely absorbed by the black surface; black
surface also emits radiation which, in turn, is absorbed by the gas depending upon its absorptivity. Therefore, the
net radiant heat exchange between the gas mass at a temperature T, and the surface at a temperature T, is:

Quet = A (6T - TH ..(13.92)
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FIGURE 13.44 Correction factor for emissivity of carbon dioxide when the total pressure of mixture is other
than 1 atm. (Source: Incropera and Dewit [1998]. op. cit.)
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FIGURE 13.45 Correction factor for mixtures of carbon dioxide and water vapour. {Source: Incropera and
Dewitt [year]. op. cit.)

The absorptivity, @, for water vapour and carbon dioxide is calculated as follows:
For water vapour:

Q.45
T, LT
o] g|T, Prs (1393
a, =Cy (TJ Ew[ #T ] (13.93)
For carbon dioxide:
0.65
T .L-T.
a-C|2| g, P (13.94)
T. T,

Correction factors C,, and C, are obtained from Figs. 1342 and 13.44, respectively. Emissivities &, and g, are
obtained from Figs. 13.41 and 1343, respectively, however, replacing T, by T in the x-axis, and replacing (p,-L)
or (p..L) by tpu-L(T./ Tt or {p..LAT,/ Ty}, respectively.

When both water vapour and carbon dioxide are present in gas mixture, total gas absorptivity, (¢) is ob-
tained as:
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TABLE 13.6 Mean beam lengths for various gas geomeiries

Geometry L.t |- Characleristic dimension. - .| —Mean path kngth (L)
Cylinder (height = diameter), Diameter, D 060D
radiating to whole surface
Cylinder (height = diameter), Diameter, D 071 D
radiating to centre of base
Cylinder (height = 0.5 diameter), Diameter, D
radiating to:
(a) end 043 D
(b) side 0.46 D
(c) whole surface 045 D
Sphere, radiating to entire surface Diameter, D 065D
Hemispherg, radiating to element Radius, A R
in centre of base
Cube, radiating to any face Edge, L 0.60 L
Two infinite planes Separation distance, L 18 1L
Bank of tubes, diameter = D,
distance between surfaces of tubes = x;
(a) triangular arrangement, x = D (2.8) x
{b) triangular arrangement, x = 2D (3.8) x
{c) square arrangement, x = D (3.5) »
Arbitrary shape of volume, V Volume to area ratio, (WA) 3.6(VIA)
(radiation to surface of area, A)

o, =&, +a-Ax ..(13.95)
where, Aa = Acis obtained from Fig. 13.45.

If the surface is grey: This is the most probable case, since with passage of time, enclosure walls will get dirty,
and the surface emissivity £ becomes Jess than unity. However, effective emissivity of the surface £, 4 in the
presence of gas mass is greater than g, ; for & = 0.8 to 1.0, we have the approximate formula for £, .4
(£ +1)

2

Then, the net radiant heat exchange between the gas mass at a temperature T, and the surface at a tempera-

ture T, is given by: '

£, .{13.92)

5 eff =

Qnet = & et Ay 0 (5, T, - 0, T} {13.93)
Radiation from flames Flame is produced during combustion (of a fuel). Radiation from flames occurs in fur-
naces, jet engine burners, etc. Flames may be lumvinous or non-luminous. Flames produced by houschold stoves
{burning kerosene or wood) are not luminous. Luminous flames have glowing particles of carbon, soot and
flying ash, and involve high temperatures. Radiation from the flame, obviously, depends on the emission of
particles contained in the flame, which in turn, depends on the kind of fuel burnt, mode of combustion, design of
the furnace, amount of air introduced, etc. Net radiation heat exchange between a flame and its enclosure is
given by:
Quer = 0-Ap P g5, (T - T,}) .(13.94)
where, A, is the area of the flame envelope, subscripts ’f' and ‘w’ refer to the flame and wall surface, respectively.
‘Effective flame temperature, Tf,’ {in Kelvin) is generally calculated as the geometric mean of the theoretical
temnperature of combustion T; and the temperature of combustion products, T,, at the furnace outlet.
1
ie. Ty = (Tl2 TE)4 K ..(13.95)

Approximate values of flame emissivity (g} for flames of different fuels are given in Table 13.7;
Exomple 13.31. A spherical chamber of 0.8 m diameter is filled with a gas mixture at 1 atm. and is at 1500 K. The gas
mixture contains 20% CO, by volume, and the rest of the mixture is non-radiating gases. Determine the emissivity of the
gas body.
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TABLE 13.7 Flame emisswvity (&) for an infinitely thick layer

Kind of fiame _ _ Flame emissivity, &
Non-iuminous gas flame (or, anthracite 0.40

in grate stoker combustion)

Luminous flame of pulverised anthracite 0.45
Luminous flame of lean coal 0.60
Lumindus flame of coal with large volatile 0.70

content (brown coal, peat, etc., bumed in

a layer or pulverised)

Luminous masut fiame 0.85

(b) If the volume is filled to a pressure of 3 atm., but with the fraction of CO; still being 20%, what will be the value
of emissivity of gas body?
Solution. This is a spherical gas body. From Table 13.6, we see that for a spherical body, the mean path length of beam
is 0.65 D, where D is the diameter of sphere.

D:=08m T,=1500K L:=065D je L=052m p:=1atm p. = 0.2 atm.

Therefore, poL = 0104 m. atm.
Le. p.-L = 0104 x 3.28 ft. atm.
ie. po-L = 0341 ft. atm.
Now, refer to Fig. 13.43. For T, = 1500 K, and p-L = 0.341 ft. atm., we read:
£ =0.09 {emissivity of carbon dioxide = emissivity of gas mixture)

{b) When the total pressure is 3 atm., with volume fraction of CO, being 20%:
Now, L remains the same, but p, will be:

p. =02 x3 atm.
Le. p. = 0.6 atm.
Then, p-L = 0.312 m. atm.
ie. poL = 0312 x 3.28 ft. atm.
ie. poL = 1023 ft atm.
Now, refer to Fig. 13.43. For T, = 1500 K, and p-L = 1.023 ft. atm., we read:
g =014 (emissivity of carbon dioxide.}

However, this value of emissivity is for a total pressure of 1 atm. In the present case, total pressure is 3 atm.
Therefore, obtained value of 0.14 has to be multiplied by a correction factor, read from Fig. 13.44. We get, from Fig.
13.44, for total pressure, p = 3 atm. And, p.-L = 1.023 ft. atm.,

C. =135 (correction factor)
Therefore, emissivity of CO, when the mixture pressure is 3 atm.:
£ =014x135 .
ie g = 0.189 (emissivity of CO, when the mixture pressure is 3 atm.)

13.12 Solar and Atmospheric Radiation

We give a brief introduction to this fascinating topic because of its importance in the context of the ‘energy crisis’
and the resulting interest in ‘renewable energy sources’; further, this is a topic which affects our daily life.

Energy emitted by the sun is known as ‘solar energy’. Inexhaustible energy of sun is produced as a result of
nuclear ‘fusion’ reaction between two hydrogen atoms to form one atom of helium. ‘Atmospheric radiation’ is
the radiation emitted or reflected by the constituents of the atmosphere.

Sun is a spherical body of diameter D = 1.39 x 10° m and is located at a mean distance of L = 1.50 x
10" m from the earth. Even though the sun radiates an enormous amount of energy, only less than a billionth of
this energy reaches the earth’s surface. Solar radiation travels through the vacuum of space till it encounters
earth’s atmosphere. By conducting experiments with high altitude aircraft or balloons, and spacecrafts, scientists
have shown that average value of solar energy reaching the upper surface of earth’s atmosphere is about 1353
W/m?. This value is known as solar constant, G,. The solar constant is the rate at which solar energy is incident
on a surface normal to the sun’s rays at the outer edge of the atmosphere when the earth is at its mean distance
from the sun. Since the earth moves in an elliptical orbit around the sun, this mean distance (L) varies with the
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Sun, radius = r position of the earth and the value of G, also varies; how-
E,=cT,* ever, the average value of G, taken is 1353 W/m?. Con-
. stituents of the atmosphere absorb and/or scatter
radiations of different wavelengths contained in solar ra-

s 4nt?).G, diation. As a result, the amount of solar energy actually
’ reaching the earth’s surface is about 950 W/m*.
Outer edge of From the measured value of solar constant, we can

,A/ Earth's easily determine the surface temperature of the sun. See
atmosphere Fig. 13.46.
. We use the condition that total energy radiated by
[T Earth the sun {considered as a black body) must be equal to the
energy passing through the surface of a sphere whose ra-
FIGURE 13.46 Estimation of surface temperature  dius is equal to the mean distance between the sun and
of sun when the solar constant is known the earth (= L), i.e.

4 wr)oTyl= 420G, -(13.96)
where, r = radius of the sun, and L = mean distance between the sun and earth. By this method, effective surface
temperature of the sun is determined to be 5762 K.

Solar energy incident on earth’s surface consists of two parts: direct solar radiation, Gy, (which reaches the
surface without any attenuation in the atmosphere) and diffuse solar radiation G, (scattered radiation coming
uniformly from all directions). Then, total solar energy incident on a horizontal surface is:

Gooar = Gpcos(6) + Gy W/m? (1397)
where, &is the angle between the sun’s rays and the normal to the surface.

Constituents of the atmosphere absorb/scatter some of the solar radiation, as already mentioned; in addi-
tion, they also emit radiation. Main constituents contributing to this ‘atmospheric radiation’ are CO, and H,O
molecules. Effective sky temperature, T, is calculated assuming the atmosphere to be a blackbody, i.e.

Gay = 0 Ty W/m? ..{13.98)

Value of Ty, varies from 230 K to 285 K, depending on the atmospheric conditions.

Sky radiation absorbed by a surface is:

Eoy absorbed = @ Gy = @ 0Ty, = &0 Ty ! W/m? (13,99

For a surface at temperature T, exposed to both solar and atmospheric radiation, net rate of heat transfer to
the surface is:

Anet_rad = EEabsorbed - }‘-‘Eemitted
ie Quet_rad = (as'Gsolar + & Tsky4) - &0 Ts4
ie. Tnet 1ad = O Gooiar + £ (Tt = T W/m? ..{13.100)

Remember that incident solar energy coming from the sun originates at a very high temperature, and there-
fore, its spectral distribution is concentrated on short wavelength region; however, radiation emitted by the sur-
face is from a relatively low temperature, and its spectral distribution is concentrated at infra-red region. This
means that radiation properties (such as absorptivity and emissivity) for a surface are quite different for incident
and emitted radiations. Table 13.8 lists values of solar absorptivity, a, and emissivity £ {at 300 K} for some com-
mon materials. Obviously, solar collectors, widely used in solar energy applications, must be made of materials
having high a, and low &

TABLE 13.8 Solar absorptivity {a;) and emissivity {&) at room temperature for a few surface

Aluminium
Polished 0.09 0.03
Anodized 0.14 0.84
Foil 0.15 0.05
Copper
Polished 0.18 0.03
Tarmished 0.65 0.75

Contd.
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Contd.

Stainless steel ‘

Polished 0.37 0.60

Dull 0.50 0.21
Congcrete 0.60 (.88
White marble 0.46 0.95
Red brick 0.63 0.93
Aspholt Q.90 0.80
Black paint 0.97 0.97
White paint 0.14 0.93
Snow 0.28 0.97
Human skin 0.62 0.97

13.13 Summary

Radiation heat transfer is unique as compared to other two modes of heat transfer, namely, conduction and
convection, in the sense that no medium is required for radiation heat transfer to occur. Radiation involves elec-
tromagnetic waves of all wavelengths, ranging from zero to infinity. All bodies at tempetatures above zero Kel-
vin emit radiation; our interest in this chapter has been on ‘thermal radiation’, i.e. radiations in the wavelength
range of 0.1 to 100 microns.

After studying fundamental laws governing radiation heat transfer, we studied radiation properties of sur-
faces, such as absorptivity (@), emissivity (&) and transmissivity (7, since these properties affect the radiation heat
transfer.

Radiation heat transfer between surfaces is also dependent on the relative size and orientation of the sur-
faces. This is taken care of in calculations by introducing the concept of ‘view factor”. Analytical relations for
view factor are available only for simple geometries, and mostly, graphical solutions, available in heat transfer
hand-books, have to be referred to. Analytical relations and graphs for view factors for some of the commonty
required geometries have been given. "View factor algebra’ enables one to get view factors for some complicated
geometries, by ‘breaking down’ these geometries into simpler geometries for which values of view factors are
either already known or tabulated.

Next, radiation heat transfer between surfaces in two-surface and three-surface enclosures were considered,
using the radiation network method. This method greatly simplifies the analysis and gives a ‘physical feel” of the
problem. Important practical examples of two-surface enclosure are: two infinite, parallel planes, long concentric
cylinders and concentric spheres. Furnaces with re-radiating (insulated) surfaces are examples of three-surface
enclosure.

‘Radiation shielding’ to reduce the radiation heat transfer between surfaces was studied next. Importance of
radiation shielding in reducing the radiation error in temperature measurement was studied.

Radiation has to be generally considered when the operating temperature level is high; as a rule, it will be
prudent to check its relevance in problems involving natural convection and forced convection at high tempera-
tures. Typical example is heat transfer from walls and doors of furnaces. In such problems, concept of ‘radiation
heat transfer coefficient’ simplifies the numerical calculations.

Finally, after giving a brief introduction to radiation heat transfer from gases, vapours and flames, we made
a mention of solar and atmospheric radiation, in view of its importance in the context of renewable energy
sources.

Questions :
1. What is meant by ‘thermal radiation’? To which part of electromagnetic spectrum it belongs?
2. What is “visible light'? To which part of electromagnetic spectrum it belongs?
3. A local radio station broadcasts radio waves at a wavelength of 480 m. What is the frequency of those radio

waves?
4. Define: absorptivity, reflectivity and transmissivity. fM.U.]
5. Explain the following: (i) Black body and Grey body (i) Specular reflector and Diffuse reflector {iii) Radiosity
and Irradiation. [M.U.]
6. State Planck’s law of monochromatic radiation. What is its significance? M.U]
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7. State and explain Kirchhoff's law of radiation. [M.U.]
8. State Wein's law of displacement and prove that monochromatic emissive power of a black body is maximum
when 4, T = 2900 zmK. {M.U}

9. What is intensity of radiation? Prove that total emissive power is x times the intensity of radiation. M.U.}

10. Explain what is meant by ‘Greenhouse effect”.

11. What is meant by ‘view factor'? When is the view factor of a surface to itself equal to zero?

12. Write a short note on properties ot view factor. M.U.]

13. Explain ‘crossed-strings method’ of finding out view factors. When is it applicable?

14. Derive a general equation to find out the view factor of any cavity w.r.t. itself.

15. What is meant by ‘view factor algebra’? When is it resorted to?

16. Write a short note on “electrical network method’ to determine radiant heat exchange between grey surfaces.

17. What is a ‘radiation shield’? When is it used?

18. What is ‘radiation error” in temperature measurement? Explain how radiation error can be reduced by the use of
radiation shields.

19. How is radiation from a gas mass different from radiation from a solid?

20. What is ‘mean path {or beam) length’?

21. How do you find out the emissivity of a gas mass containing carbon dioxide or/and water vapour, the mixture
pressure being one atinosphere?

22. What is ‘solar constant’? How is the effective surface temperature of sun determined when the value of solar
constant is known?

23. What is meant by ‘effective sky temperature’?

24. Why is solar absorptivity of a given surface quite different from its absorptivity for radiation from other sur-
rounding bodies?

Problems

1. A hole of area dA = 2 cm? is opened on the surface of a large spherical cavity whose inside is maintained at 900
K. Calculate: {a) the radiation energy streaming through the hole in all directions into space, (b) the radiation
energy streaming per unit solid angle in a direction making a 45 deg. angle with the normal to the surface of the
opening.

2. The temperature of a body of area 0.1 m® is 700 K. Calculate the total rate of energy emission, intensity of
normal radiation in W/{m“sr), maximuin monochromatic emissive power, and wavelength at which it occurs.

3. Treating sun as a black body with a surface temperature of 5800 K, determine the rate at which infra-red radia-
tion (4 = (176 - 100 gan) is emitted by the sun. .

4. Filament of an incandescent light bulb is at 2800 K. Treating it as a black body, determine the fraction of the
radiant energy emitted by the filament that falls in the visible range. Also, find out at what wavelength is the
emission of radiation from the filament becomes maximum.

5. Window glass transmits radiant energy in the wavelength range 0.4 4m to 2.5 #m. Determine the rate of radiant
energy which is transmitted, through a glass window of size: 2 m x 2 m, when the black body source tempera-
ture is: (a) 5800 K (i.e. sun’s surface temperature), and (b} 1000 K .

6. Spectral emissivity of a particular surface al 900 K is approximated by a step function, as follows: £ =03 for
A=0to2 um, =06 for A=2to 10 gm, and & = 0.3 for A = 10 gm to . Calculate (i) average emissivity of the
surface, and (ii) rate of radiation emission from the surface.

7. Two diffuse surfaces, a small disk of area A; and a large disk of area A,, are parallel to each other and directly
opposed, i.e. a line joining their centres is normal to both the surfaces. The large disk has a radius R and is
located at height L from the smaller disk. Obtain an expression for the view factor of small disk w.r.t. the large
disk. M.U]

8. Find out the net heat transferred between two circular disks 1 and 2, oriented one above the other, parallel to
each other on the same centre line as shown in Fig. 13.18. Disk 1 has a radius of 0.6 m and is maintained at 900
K, and disk 2 has a radius of 0.7 m and is maintained at 600 K . Assume both the disks to be black surfaces.

9. Find out the net heat transferred between two aligned paralle] rectangles, as shown in Fig. 1318. (X =1m, Y =
1.5 m and L = 1.5 m). Surface 1 is maintained at 600 K, and surface 2 is maintained at 1000 K . Assume both the
surfaces to be black surfaces.

10. Find out the net heat transferred between the areas A, and A, shown in Fig. Example 13,10 (See text for the
figure). Area 1 is maintained at 700 K, and area 2 is maintained at 400 K. Assume both the surfaces to be black.
11. Determine the view factor from the side surface to the base of a cylindrical enclosure whose height is twice its

diameter.

FUNDAMENTALS OF HEAT AND MASS TRANSFER



12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

Determine the view factors from the base of a cube to each of the other five surfaces.
Find out the view factor from the dome of a hemispherical furnace to its circular base.
Find out the view factor (F;;} between the plates i and j shown in Fig. Example 13.17a. Given: w; = Ll m, w;=2m
and L = 0.70.
A 0.3 m x 0.3 m ingot, 1.2 m in height, at a temperature of 1000 deg.C, is taken out of a furnace and rests on the
floor of a foundry room. Assuming that the surroundings are at a temperature of 30 deg.C, and the emissivity of
the surface of the ingot to be 0.8, calculate the net radiant heat loss from the ingot.
A spherical liquid oxygen tank, 0.3 m in diameter is enclosed concentrically in a spherical container of 0.4 m
diameter and the space in between is evacuated. The tank surface is at ~183°C and has an emissivity = 0.2. The
container surface is at 25°C and has an emissivity = 0.25. Determine the net radiant heat transfer rate. [M.U.]
A hemispherical furnace of radius 1.6 m has a roof temperature of T; = 900 K and emissivity 0.8. The flat circular
floor has a temperature of 500 K and emissivity of 0.5. Calculate the net radiant heat exchange between the roof
and floor. . M.U ]
Three thin-walled, long, circular cylinders 1, 2 and 3, of diameters 20 ¢m, 30 cm and 40 cm, respectively, are
arranged concentrically. Temperature of cylinder 1 is 100 K and that of cylinder 3 is 300 K. Emissivities of
cylinders 1, 2 and 3 are 0.05, 0.1 and 0.2, respectively. Assuming that there is vacuum inside the annular spaces,
determine the steady state temperature attained by cylinder 2.
A long pipe, 50 mm diameter passes through a room and is exposed to air at 20°C. The pipe surface temperature
is 93°C. Assuming that the emissivity of pipe surface is 0.6, calculate the radiation heat loss per metre length of
the pipe. [M.U]
Calculate the net radiant heat interchange per square metre for two large parallel plates maintained at 800°C
and 300°C. The emissivities of two plates are 0.3 and 0.6, respectively.
Pipe carrying steam, OD = 20 cm, is exposed in a large room at 30°C. Pipe surface temperature = 400°C and
emissivity of pipe surface is 0.8. Calculate heat loss by pipe by radiation. What would be rate of loss of heat if
pipe is enclosed in a 40 cm diameter brick conduit of emissivity 0917
A blind cylindrical hole of diameter and length 3 cm is drilled into metal stab having emissivity 0.6. If the metal
slab is maintained at temp 350°C, find the rate of heat escaping out of the hole by radiation. M.U]
Calculate the radiation heat transfer from a hemispherical cavity if inside temperature is 800 K and its emissivity
is 0.6. Diameter of cavity is 500 mm.
A hohlraum is to be constructed out of a thin copper sphere of diameter = 20 cm. Its internal surface is highly
oxidised. What should be the area of a small opening to be made on the surface of the sphere, if the desired
absorptivity is 0.95?
A long duct of equilateral triangular section, of side w = 1.0 m, shown in Fig. Example 13.22, has its surface 1 at
600 K, surface 2 at 1100 K, and surface 3 is insulated. Further, surface 1 has an emissivity of 0.8 and surface 2 is
black. Determine the rate at which energy must be supplied to surface 2 to maintain these operating conditions.
Two co-axial eylinders of 0.5 m and 1 m diameter are 1.2 m long. The annular top and bottom surfaces are well
insulated and act as re-radiating surfaces. The inner surface is at 1100 K and has an emissivity of 0.6. The outer
surface is maintained at 500 K and its emissivity is 0.4.

(i) Determine the heat exchange between the surfaces

(ii) If the annular base surfaces are open to the surroundings at 300 K, determine the radiant heat exchange.
{Hint: If the outer cylinder is surface 2, first determine F;; and Fp).
Two parallel plates, 0.5 m x 1 m each, are spaced 0.5 m apart. The plates are at temperatures of 900°C and 600°C
and their emissivities are 0.2 and 0.5, respectively. The plates are located in a large room, the walls of which are
at 25°C. The surfaces of the plates facing each other only exchange heat by radiation. Determine the rates of heat
lost by each plate and heat gain of the walls by radiation. Use radiation network for solution.
Assume shape factor between parallel plates: Fy; = Fy = 0.285.,
A fumace is of the shape of a frustrum of a cone. Diameters of top and bottom surfaces are 5 m and 3 m,
respectively, and the height is 3 m. Bottom surface is maintained at 1000°C and the top surface is at 600°C.
Emissivities of top and bottom surfaces are 0.8 and 0.9, respectively. Inclined side surface is refractory surface.
Find the radiation heat transfer from the bottom to the top surface and also the temperature of the inclined
surface.
Two very large parallel plates with emissivities 0.2 and 0.6 exchange heat. Find the percentage reduction in heat
transfer when two polished aluminium radiation shields (€= 0.3) are placed between them. Also, find the equi-
librium temperatures of the two shields.
Two large parallel planes facing each other and having emissivities 0.3 and 0.5 are maintained at 700°C and
500°C, respectively. Determine the rate at which heat is exchanged between the two surfaces by radiation. If a
radiation shield of emissivity 0.05 on both sides is placed parallel between the two surfaces, determine the
percentage rechuction in the radiant heat exchange rate. What is the equilibrium temperature of the shield?
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33.

34,

35.
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37.
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A spherical tank with diameter I, = 30 em filled with a cryogenic fluid at T, = 90 K is placed inside a spherical
container of diameter D, = 50 em and is maintained at T, = 300 K. Emissivities of inner and outer tanks are &=
0.10 and £ = 0.2, respectively. A spherical radiation shield of diameter D = 40 ¢m and having an emissivity &; =
0.05 on both surfaces is placed between the spheres. Calculate the rate of heat loss from the system by radiation.
Then, find the rate of evaporation of cryogenic liquid for he = 2.1 x 10° J/kg. What is the equilibrium tempera-
ture of the shield?

A double-walled flask may be considered as equivalent to two infinite parallel plates. The emissivities of walls
are (.3 and 0.8, respectively. The space between the walls of the flask is evacuated. To reduce heat flow, a shield
of polished aluminium with emissivity equal to 0.04 {on both sides) is inserted between the two walls. Find the

- percentage reduction in heat transfer. Also, find the equilibrium temperature of the shield. M.U]

The net radiation from the surface of two parallel plates maintained at temperatures T, and T, is to be reduced
to one-fifth. Calculate the number of screens to be placed between two surfaces to achieve this reduction in heat
exchange, assuming the emissivity of screens on both sides as 0.05 and that of surfaces as 0.2.

A 10 mm OD pipe carries a cryogenic fluid at 100 K. This pipe is encased by another pipe of 15 mm OD, and the
space between the pipes is evacuated. The outer pipe is at 300 K. Emissivities of inner and outer surfaces are 0.1
and 0.2, respectively. (a) Determine the radiant heat flow rate over a pipe length of 3 m. (b) I a radiation shield
of diameter 12 mm and emissivity 0.05 on both sides is placed between the pipes, determine the percentage
reduction in heat flow. (¢} What is the equilibrium temperature of the shield?

Hot air is flowing in a duct whose walls are maintained at a temperature T,, = 500 K. A thermocouple placed in
the stream shows a reading of 800 K. If the emissivity of the thermocouple junction is £ = 0.8 and the convective
heat transfer coefficient between the flowing air and the thermocouple is # = 80 W/(m?C), find out the true
temperature of the flowing streamn. How much is the radiation error?

Hot air is flowing in a duct whose walls are maintained at a temperature T, = 400 K. A thermocouple placed in
the stream shows a reading of 600 K. If the emissivity of the ther-mocouple junction is £ = 0.6 and the convec-
tive heat transfer coefficient between the flowing air and the thermocouple is i = 100 W/{(m?C), find out the true
temperature of the flowing stream. (b) Now, if a radiation shield (g, = 0.2) is placed between the thermocouple
and the walls, what will be new value of T, read by the thermocouple? And, how much is the temperature
error? Take A,/A, = 0.1,

A spherical chamber of 1.5 m diameter is filled with a gas mixture at 1 atm. and is at 1200 K. The gas mixture
contains 18% CO, by volume, and the rest of the mixture is non-radiating gases. Determine the emissivity of the
gas body.

(b) If the volume is filled to a pressure of 3 atm., but with the fraction of CO, still being 18 %, what will be the
value of emissivity of gas body?

A cubical furnace of 2 m side, contains a gas mixture at 1500 K at a total pressure of 2 atm. The gas mixture
contains 15% of CO; and 10% of H,O by volume. If the furnace walls are at a temperature of 600 K, find cut the
heat transferred by radiation from the gases to the walls. Assume that surfaces are black.
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